Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38548929

RESUMO

BACKGROUND: Lead (Pb) in house dust contributes significantly to blood lead levels (BLLs) in children which may result in dire health consequences. Assessment of house dust Pb in the United States, relationships with Pb in soil and paint, and residential factors influencing Pb concentrations are essential to probing drivers of house dust Pb exposure. OBJECTIVE: Pb concentrations in vacuum-collected house dust are characterized across 346 homes participating in the American Health Homes Survey II (AHHS II), a US survey (2018-2019) evaluating residential Pb hazards. Connections between house dust Pb and soil Pb, paint Pb, and other residential factors are evaluated, and dust Pb concentration data are compared to paired loading data to understand Pb hazard standard implications. RESULTS: Mean and median vacuum dust Pb concentrations were 124 µg Pb g-1 and 34 µg Pb g-1, respectively. Vacuum-collected dust concentrations and dust wipe Pb loading rates were significantly correlated within homes (α < 0.001; r ≥ 0.4). At least one wipe sample exceeded current house dust Pb loading hazard standards (10 µg ft-2 or 100 µg Pb ft-2 for floors and windowsills, respectively) in 75 of 346 homes (22%). House dust Pb concentrations were correlated with soil Pb (r = 0.64) and Pb paint (r = 0.57). Soil Pb and paint Pb were also correlated (r = 0.6). IMPACT: The AHHS II provides a window into the current state of Pb in and around residences. We evaluated the relationship between house dust Pb concentrations and two common residential Pb sources: soil and Pb-based paint. Here, we identify relationships between Pb concentrations from vacuum-collected dust and paired Pb wipe loading data, enabling dust Pb concentrations to be evaluated in the context of hazard standards. This relationship, along with direct ties to Pb in soil and interior/exterior paint, provides a comprehensive assessment of dust Pb for US homes, crucial for formulating effective strategies to mitigate Pb exposure risks in households.

2.
J Expo Sci Environ Epidemiol ; 33(2): 160-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35986209

RESUMO

BACKGROUND: Exposure to lead (Pb), arsenic (As) and copper (Cu) may cause significant health issues including harmful neurological effects, cancer or organ damage. Determination of human exposure-relevant concentrations of these metal(loids) in drinking water, therefore, is critical. OBJECTIVE: We sought to characterize exposure-relevant Pb, As, and Cu concentrations in drinking water collected from homes participating in the American Healthy Homes Survey II, a national survey that monitors the prevalence of Pb and related hazards in United States homes. METHODS: Drinking water samples were collected from a national survey of 678 U.S. homes where children may live using an exposure-based composite sampling protocol. Relationships between metal(loid) concentration, water source and house age were evaluated. RESULTS: 18 of 678 (2.6%) of samples analyzed exceeded 5 µg Pb L-1 (Mean = 1.0 µg L-1). 1.5% of samples exceeded 10 µg As L-1 (Mean = 1.7 µg L-1) and 1,300 µg Cu L-1 (Mean = 125 µg L-1). Private well samples were more likely to exceed metal(loid) concentration thresholds than public water samples. Pb concentrations were correlated with Cu and Zn, indicative of brass as a common Pb source is samples analyzed. SIGNIFICANCE: Results represent the largest national-scale effort to date to inform exposure risks to Pb, As, and Cu in drinking water in U.S. homes using an exposure-based composite sampling approach. IMPACT STATEMENT: To date, there are no national-level estimates of Pb, As and Cu in US drinking water collected from household taps using an exposure-based sampling protocol. Therefore, assessing public health impacts from metal(loids) in drinking water remains challenging. Results presented in this study represent the largest effort to date to test for exposure-relevant concentrations of Pb, As and Cu in US household drinking water, providing a critical step toward improved understanding of metal(loid) exposure risk.


Assuntos
Arsênio , Água Potável , Metais Pesados , Criança , Humanos , Estados Unidos , Chumbo , Metais Pesados/análise , Arsênio/análise , Características da Família , Monitoramento Ambiental
3.
Atmos Environ X ; 20: 1-8, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38269205

RESUMO

Wildland fires, which includes both wild and prescribed fires, and agricultural fires in sum are one of the largest sources of fine particulate matter (PM2.5) emissions to the atmosphere in the United States (US). Although wildland fire PM2.5 emissions are primarily composed of carbonaceous material, many other elements including trace metals are emitted at very low levels. Lead (Pb) is a US Environmental Protection Agency (EPA) criteria pollutant that is ubiquitous in the environment at very low concentrations including in biomass that can burn and emit Pb into the atmosphere. Although fires may emit Pb at very low concentrations, they can be a source of sizeable Pb emissions to the atmosphere because of the large quantity of PM2.5 emitted from fires. In this work, we measure Pb concentrations in unburned biomass, ash/residues, and particulate matter <2.5 µm (PM2.5) emitted from wildland fires using in-field measurements near prescribed fires and in laboratory simulations. Emission factors were calculated for multiple biomass types, representative of different regions of the US including grasslands in Oregon and Kansas; forest litter from Oregon, Montana, Minnesota, and North Carolina; and peat cores from Minnesota. Most of the biomass Pb remains in the ash/residues. The small percentage (<10%) that is emitted in PM2.5 is dependent on the biomass Pb concentration. The emissions factors measured here are several orders of magnitude lower than some reported in the literature, but the studies exhibited a wide range of values, which may be due to large uncertainties in the measurement method rather than differences in Pb emissions. Wildland fires are expected to increase in size and frequency in future years and these new emission factors can be used to improve the accuracy of Pb emissions estimates and better constrain our understanding of Pb emissions to the atmosphere.

4.
J Anal At Spectrom ; 37: 898-909, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35903413

RESUMO

Three 1 2 mass oriented rare earth element (REE) M2+ correction approaches (fixed factor, a dual internal standard, and an in-sample) are evaluated for use in an ICP-MS environmental method update. The multi-variant-based evaluation includes analyzing the same 19 REE-fortified matrices on eight different days over a two-month period using two instrument tunes. These REE-fortified matrices were also analyzed using HR-ICP-MS and ICP-MS/MS to estimate the reference value for use in the principal component analysis (PCA) and hierarchical modeling evaluation. A fixed factor is unable to compensate for matrix and mass dependent drift and because of this it generates the largest across matrix, tune, and day 95th percent confidence bounds for the REE corrections on both As (1.1 ppb) and Se (23 ppb) using samples fortified with 100 ppb Nd, Sm & Gd. The PCA analysis indicated that M2+ ions cluster together across matrix, tune and day better than M1+ and these tighter correlations are reflected in reduced 95th percentile confidence bounds for dual M2+ internal standards (M2+; As = 0.3 ppb; Se = 5.4 ppb; n = 704) relative to M1+ internal standards (M1+; As = 0.6 ppb; Se = 12.0 ppb; n = 1056). The use of an in-sample M2+ correction produced comparable 95th percent confidence bounds (As = 0.2 ppb; Se = 3.4 ppb; n = 352) relative to the M2+ internal standard approaches. Finally, the hierarchical modeling indicated M2+ ions as internal standards tend to minimize the across day variability induced by cone changes and the daily reoccurring matrix shifts in the M2+/M1+ ratio associated with 250 ppm matrices of Na, Ca, and Mg. This internal standard driven reduction in variability can be beneficial in compliance monitoring methods.

5.
Toxicol Sci ; 167(2): 559-572, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351402

RESUMO

Air pollution is a complex mixture of particulate matter and gases linked to adverse clinical outcomes. As such, studying responses to individual pollutants does not account for the potential biological responses resulting from the interaction of various constituents within an ambient air shed. We previously reported that exposure to high levels of the gaseous pollutant acrolein perturbs myocardial synchrony. Here, we examined the effects of repeated, intermittent co-exposure to low levels of concentrated ambient particulates (CAPs) and acrolein on myocardial synchrony and the role of transient receptor potential cation channel A1 (TRPA1), which we previously linked to air pollution-induced sensitization to triggered cardiac arrhythmia. Female B6129 and Trpa1-/- mice (n = 6/group) were exposed to filtered air (FA), CAPs (46 µg/m3 of PM2.5), Acrolein (0.42 ppm), or CAPs+Acrolein for 3 h/day, 2 days/week for 4 weeks. Cardiac ultrasound was conducted to assess cardiac synchronicity and function before and after the first exposure and after the final exposure. Heart rate variability (HRV), an indicator of autonomic tone, was assessed after the final exposure. Strain delay (time between peak strain in adjacent cardiac wall segments), an index of myocardial dyssynchrony, increased by 5-fold after the final CAPs+Acrolein exposure in B6129 mice compared with FA, CAPs, or Acrolein-exposed B6129 mice, and CAPs+Acrolein-exposed Trpa1-/- mice. Only exposure to acrolein alone increased the HRV high frequency domain (5-fold) in B6129 mice, but not in Trpa1-/- mice. Thus, repeated inhalation of pollutant mixtures may increase risk for cardiac responses compared with single or multiple exposures to individual pollutants through TRPA1 activation.


Assuntos
Acroleína/toxicidade , Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Exposição por Inalação/efeitos adversos , Miocárdio/metabolismo , Material Particulado/toxicidade , Canal de Cátion TRPA1/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Sinergismo Farmacológico , Feminino , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Camundongos Knockout , Canal de Cátion TRPA1/genética
6.
J Anal At Spectrom ; 34(10): 2094-2104, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32280153

RESUMO

Rare earth elements (REE) can produce M2+ ions in ICP-MS and 150Nd2+, 150Sm2+, and 156Gd2+ can produce false positives on 75As and 78Se. Alternative instrumental tuning conditions, that utilize lower He flows within the collision cell, reduce these false positives by a factor of 2 (to 0.8 ppb As and 19 ppb Se in solutions containing 50 ppb Nd and Gd) with comparable 16O35Cl+ reduction (<100 ppt false 51V in 0.4% HCl) and Se sensitivity (DL < 1 ppb). Further reduction of these false positives is achieved by estimating the M2+ correction factors and utilizing them in the interference-correction software. Approaches to estimating the M2+ correction factor were evaluated with an emphasis on techniques that tolerate daily variability in end-user backgrounds and their ability to reduce the initial and ongoing purity requirements associated with the rare earth standards used to estimate the M2+ correction factor. The direct elemental and polyatomic overlaps associated with unit-mass approaches tend to overcorrect as non-rare-earth signals as small as 30 cps at the unit mass can induce bias relative to the <300 cps signals associated with the M2+ from a 50 ppb REE standard solution. Alternatively, shifting the M2+ estimate to a half mass (i.e., m/z 71.5: 143Nd2+) eliminates the direct overlap source of bias and allows the unit mass signal to approach 150000 cps before it bleeds over on the 1/2 mass because of abundance sensitivity limitations. The performance of the half-mass approach was evaluated in reagent water and regional tap waters fortified with Nd, Sm, and Gd at 2 ppb and 50 ppb. In addition, a half-mass in-sample approach was also evaluated. This approach was found to be beneficial relative to the external or fixed-factor half-mass approach as it could compensate for instrument drift and matrix-induced shifts in the M2+ factors. Finally, all results were evaluated relative to the As and Se concentrations determined using an ICP-QQQ in mass shift mode and a high-resolution ICP-MS.

7.
Environ Sci Technol ; 52(17): 10067-10077, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30075627

RESUMO

It is important to understand molecular effects on plants exposed to compounds released from use of products containing engineered nanomaterials. Here, we present mRNA sequencing data on transcriptome impacts to Douglas-fir following 2 weeks of sublethal exposure to 30:1 diluted airborne emissions released from combustion of diesel fuel containing engineered CeO2 nanoparticle catalysts (DECe). Our hypothesis was that chamber exposure to DECe would induce distinct transcriptome changes in seedling needles compared with responses to conventional diesel exhaust (DE) or filtered DECe Gas Phase. Significantly increased uptake/binding of Ce in needles of DECe treated seedlings was 2.7X above background levels and was associated with altered gene expression patterns. All 225 Blast2GO gene ontologies (GOs) enriched by up-regulated DECe transcripts were nested within GOs for DE, however, 29 of 31 enriched GOs for down-regulated DECe transcripts were unique. MapMan analysis also identified three pathways enriched with DECe down-regulated transcripts. There was prominent representation of genes with attenuated expression in transferase, transporter, RNA regulation and protein degradation GOs and pathways. CeO2 nanoparticle additive decreased and shifted molecular impact of diesel emissions. Wide-spread use of such products and chronic environmental exposure to DECe may adversely affect plant physiology and development.


Assuntos
Nanopartículas , Pseudotsuga , Gasolina , Transcriptoma , Emissões de Veículos
8.
J Environ Eng (New York) ; 144(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-31296973

RESUMO

Surface water conductivity measurements were used to evaluate the combined contribution of anions in western Pennsylvania from brines discharged by sources such as oil and gas wastewater treatment, coal-fired power plants, and coal mining activities. Conductivity sensor data were collected in the Allegheny River during a US Environmental Protection Agency and US Fish and Wildlife study that included seven sites covering 256 river km during the fall of 2012. Intermittent discharges, such as oil and gas wastewater, and continuous sources contributing to the conductivity were quantified using constrained and adaptive decomposition of time-series (CADETS) frequency analysis. CADETS was able to quantify the intermittent or short-term component of conductivity at sites where the intermittent fraction was 1 to 22% of the total conductivity. The demonstrated efficacy of the CADETS method for surface water quality analysis suggests it could be widely used to evaluate other water sensor data in rivers with both continuous and intermittent source impacts.

9.
Environ Pollut ; 218: 1180-1190, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27593352

RESUMO

The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM2.5) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO3- level in winter and high SO42- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental , Material Particulado/química , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Humanos , Indústrias , Ohio , Material Particulado/análise , Estações do Ano
10.
Sci Total Environ ; 542(Pt A): 505-20, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26520274

RESUMO

In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters limited the interpretation of historical trends.


Assuntos
Brometos/análise , Água Potável/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Purificação da Água , Desinfecção , Modelos Químicos , Campos de Petróleo e Gás , Pennsylvania , Rios/química , Trialometanos , Eliminação de Resíduos Líquidos/métodos
11.
Sci Total Environ ; 529: 21-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26005746

RESUMO

Oil and gas extraction and coal-fired electrical power generating stations produce wastewaters that are treated and discharged to rivers in Western Pennsylvania with public drinking water system (PDWS) intakes. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to quantify inorganic species in wastewater and river samples using a method based on EPA Method 200.7 rev4.4. A total of 53 emission lines from 30 elements (Al, As, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, V, and Zn) were investigated. Samples were prepared by microwave-assisted acid digestion using a mixture of 2% HNO3 and 0.5% HCl. Lower interferences and better detection characteristics resulted in selection of alternative wavelengths for Al, As, Sb, Mg, Mo, and Na. Radial view measurements offered accurate determinations of Al, Ba, K, Li, Na, and Sr in high-brine samples. Spike recovery studies and analyses of reference materials showed 80-105% recoveries for most analytes. This method was used to quantify species in samples with high to low brine concentrations with method detection limits a factor of 2 below the maximum contaminant limit concentrations of national drinking water standards. Elements B, Ca, K, Li, Mg, Na, and Sr were identified as potential tracers for the sources impacting PDWS intakes. Usability of the ICP-OES derived data for factor analytic model applications was also demonstrated.


Assuntos
Monitoramento Ambiental/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Pennsylvania , Oligoelementos/análise , Eliminação de Resíduos Líquidos , Águas Residuárias/estatística & dados numéricos
12.
Part Fibre Toxicol ; 12: 12, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944145

RESUMO

BACKGROUND: The potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscious hypertensive rats co-exposed to concentrated ambient particulates (CAPs) and ozone (O3) in Durham, NC during the summer and winter, and to analyze responses based on particle mass and chemistry. METHODS: Rats were exposed once for 4 hrs by whole-body inhalation to fine CAPs alone (target concentration: 150 µg/m3), O3 (0.2 ppm) alone, CAPs plus O3, or filtered air during summer 2011 and winter 2012. Telemetered electrocardiographic (ECG) data from implanted biosensors were analyzed for heart rate (HR), ECG parameters, heart rate variability (HRV), and spontaneous arrhythmia. The sensitivity to triggering of arrhythmia was measured in a separate cohort one day after exposure using intravenously administered aconitine. PM elemental composition and organic and elemental carbon fractions were analyzed by high-resolution inductively coupled plasma-mass spectrometry and thermo-optical pyrolytic vaporization, respectively. Particulate sources were inferred from elemental analysis using a chemical mass balance model. RESULTS: Seasonal differences in CAPs composition were most evident in particle mass concentrations (summer, 171 µg/m3; winter, 85 µg/m3), size (summer, 324 nm; winter, 125 nm), organic:elemental carbon ratios (summer, 16.6; winter, 9.7), and sulfate levels (summer, 49.1 µg/m3; winter, 16.8 µg/m3). Enrichment of metals in winter PM resulted in equivalent summer and winter metal exposure concentrations. Source apportionment analysis showed enrichment for anthropogenic and marine salt sources during winter exposures compared to summer exposures, although only 4% of the total PM mass was attributed to marine salt sources. Single pollutant cardiovascular effects with CAPs and O3 were present during both summer and winter exposures, with evidence for unique effects of co-exposures and associated changes in autonomic tone. CONCLUSIONS: These findings provide evidence for a pronounced effect of season on PM mass, size, composition, and contributing sources, and exposure-induced cardiovascular responses. Although there was inconsistency in biological responses, some cardiovascular responses were evident only in the co-exposure group during both seasons despite variability in PM physicochemical composition. These findings suggest that a single ambient PM metric alone is not sufficient to predict potential for interactive health effects with other air pollutants.


Assuntos
Poluentes Atmosféricos/toxicidade , Arritmias Cardíacas/induzido quimicamente , Frequência Cardíaca/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Ozônio/toxicidade , Material Particulado/toxicidade , Estações do Ano , Poluentes Atmosféricos/química , Animais , Líquido da Lavagem Broncoalveolar/química , Eletrocardiografia , Desenho de Equipamento , Exposição por Inalação/análise , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Pulmão/imunologia , Masculino , Ozônio/química , Tamanho da Partícula , Material Particulado/química , Ratos , Testes de Toxicidade/instrumentação , Testes de Toxicidade/métodos , Tempo (Meteorologia)
13.
Environ Sci Technol ; 48(18): 10607-13, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25144365

RESUMO

Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impacts, size-resolved measurements of particle composition and mass concentration have been performed in Newcastle-upon-Tyne, United Kingdom, where buses have used an nCe additive since 2005. These observations show that the noncrustal cerium fraction thought to be associated with the use of nCe has a mass concentration ∼ 0.3 ng m(-3) with a size distribution peaking at 100-320 nm in aerodynamic diameter. Simulations with a near-roadway multicomponent sectional aerosol dynamic model predict that the use of nCe additives increases the number concentration of nuclei mode particles (<50 nm in diameter) while decreasing the total mass concentration. The near-road model predicts a downwind mass size distribution of cerium-containing particles peaking at 150 nm in aerodynamic diameter, a value similar to that measured for noncrustal cerium in Newcastle. This work shows that both the emission and atmospheric transformation of cerium-containing particles needs to be taken into account by regional modelers, exposure scientists, and policymakers when determining potential environmental and human health impacts.


Assuntos
Poluentes Atmosféricos/análise , Cério/análise , Monitoramento Ambiental/métodos , Gasolina/análise , Material Particulado/análise , Emissões de Veículos/análise , Aerossóis , Humanos , Modelos Teóricos , Veículos Automotores , Nanopartículas , Tamanho da Partícula , Reino Unido
14.
Part Fibre Toxicol ; 11: 29, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24934158

RESUMO

BACKGROUND: Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments. METHODS: Size-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 µg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 µg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound. RESULTS: On an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB. CONCLUSIONS: The findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations.


Assuntos
Incêndios , Cardiopatias/induzido quimicamente , Pneumopatias/induzido quimicamente , Pulmão/patologia , Microtomia/métodos , Material Particulado/toxicidade , Solo/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Endotoxinas/toxicidade , Monitoramento Ambiental , Feminino , Cardiopatias/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Pneumopatias/patologia , Camundongos , Miocárdio/patologia , Necrose/induzido quimicamente , Necrose/patologia , North Carolina , Tamanho da Partícula , Material Particulado/análise , Pneumonia/induzido quimicamente , Pneumonia/patologia , Polimixina B/farmacologia , Valor Preditivo dos Testes , Espécies Reativas de Oxigênio/metabolismo
15.
Toxicol Appl Pharmacol ; 234(1): 25-32, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18973770

RESUMO

Mechanisms of particulate matter (PM)-induced cardiotoxicity are not fully understood. Direct translocation of PM-associated metals, including zinc, may mediate this effect. We hypothesized that following a single intratracheal instillation (IT), zinc directly translocates outside of the lungs, reaching the heart. To test this, we used high resolution magnetic sector field inductively coupled plasma mass spectrometry to measure levels of five stable isotopes of zinc ((64)Zn, (66)Zn, (67)Zn, (68)Zn, (70)Zn), and copper in lungs, plasma, heart, liver, spleen, and kidney of male Wistar Kyoto rats (13 weeks old, 250-300 g), 1, 4, 24, and 48 h following a single IT or oral gavage of saline or 0.7 micromol/rat (70)Zn, using a solution enriched with 76.6% (70)Zn. Natural abundance of (70)Zn is 0.62%, making it an easily detectable tracer following exposure. In IT rats, lung (70)Zn was highest 1 h post IT and declined by 48 h. Liver endogenous zinc was increased 24 and 48 h post IT. (70)Zn was detected in all extrapulmonary organs, with levels higher following IT than following gavage. Heart (70)Zn was highest 48 h post IT. Liver, spleen and kidney (70)Zn peaked 4 h following gavage, and 24 h following IT. (70)Zn IT exposure elicited changes in copper homeostasis in all tissues. IT instilled (70)Zn translocates from lungs into systemic circulation. Route of exposure affects (70)Zn translocation kinetics. Our data suggests that following pulmonary exposure, zinc accumulation and subsequent changes in normal metal homeostasis in the heart and other organs could induce cardiovascular injury.


Assuntos
Poluentes Atmosféricos/farmacocinética , Miocárdio/metabolismo , Material Particulado/farmacocinética , Isótopos de Zinco/farmacocinética , Animais , Transporte Biológico , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/fisiopatologia , Cobre/metabolismo , Homeostase/efeitos dos fármacos , Instilação de Medicamentos , Masculino , Espectrometria de Massas/métodos , Material Particulado/administração & dosagem , Ratos , Ratos Endogâmicos WKY , Fatores de Tempo , Distribuição Tecidual , Traqueia , Isótopos de Zinco/administração & dosagem
16.
Biomed Chromatogr ; 22(4): 394-401, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18004745

RESUMO

A rapid and high-throughput method for the determination of urinary levels of the oxidative stress biomarker, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), has been developed and validated using liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-MS/MS). The assay features a cheap and readily available non-isotopic internal standard, a single-step filtration sample preparation, and a total analysis time of 6 min including column re-equilibration. The method was validated based on linearity, accuracy (100-106%), precision (CV < 7%), sample preparation stability (< or =5%, 72 h). Intra-laboratory patient ranges were established comparing children and adults (n = 345).


Assuntos
Cromatografia Líquida/métodos , Desoxiguanosina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , 8-Hidroxi-2'-Desoxiguanosina , Desoxiguanosina/química , Desoxiguanosina/urina , Humanos , Estrutura Molecular , Reprodutibilidade dos Testes
17.
Rapid Commun Mass Spectrom ; 21(12): 1920-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17510935

RESUMO

An analytical method was developed for the rapid and accurate quantification of leucine (LEU) and isoleucine (ILE) from plasma using electrospray ionization tandem mass spectrometry (ESI-MS/MS). The two isomeric amino acids were selectively detected using fragment ions unique to each compound. As a result, the need for chromatographic separation was avoided allowing for faster analysis (3 min). The possibility of any considerable interference between the two transitions was closely monitored, with no significant interference being observed. The presence of interfering compounds in plasma was also evaluated and found to minimal. The method was evaluated based upon linearity, with r2>or=0.995 for both compounds, and accuracy, with no more than 8% deviation from the theoretical value.


Assuntos
Isoleucina/sangue , Leucina/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Humanos , Reprodutibilidade dos Testes
18.
Artigo em Inglês | MEDLINE | ID: mdl-17118722

RESUMO

A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (

Assuntos
Ácidos/urina , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas em Tandem/métodos , Ácidos/química , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Resinas de Troca Aniônica , Ácido Formiminoglutâmico/química , Ácido Formiminoglutâmico/urina , Hipuratos/química , Hipuratos/urina , Humanos , Pessoa de Meia-Idade , Estrutura Molecular , Compostos Orgânicos/química , Compostos Orgânicos/urina , Ácido Pirrolidonocarboxílico/química , Ácido Pirrolidonocarboxílico/urina , Reprodutibilidade dos Testes
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 850(1-2): 190-8, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17127111

RESUMO

A novel method for the separation and simultaneous determination of urinary D- and L-lactic acid enantiomers by high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) is presented. The chiral separation was optimized on a Chirobiotic teicoplanin aglyocone (TAG) column. Most interestingly, the addition of water in small volume fraction to the polar organic mobile phase was found to significantly improve the chromatography. Calibration curves were linear (r2>0.9950) over the range 3-1000 mg/L for L-lactic acid and 0.5-160.8 mg/L for D-lactic acid. The limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) were determined experimentally (n=3) to be 0.2 and 0.5mg/L for L-lactic acid and 0.4 and 1.3 mg/L for D-lactic acid, respectively. The normal patient range of L-lactic acid was 1-20 microg/mg creatinine with an elevated value of 85 microg/mg creatinine. For D-lactic acid, the range of normal values were between 0 and 5 microg/mg creatinine with an elevated value of 40 microg/mg creatinine. Finally, the validated method allows for rapid analysis with a total run time of 7.5 min.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácido Láctico/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Teicoplanina/química , Calibragem , Humanos , Ácido Láctico/urina , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...